lunes, 24 de noviembre de 2014

4.3.4 Regla de cramer

La regla de Cramer se aplica para resolver sistemas de ecuaciones lineales que cumplan las siguientes condiciones:
1. El número de ecuaciones es igual al número de incógnitas.
 2.El determinante de la matriz de los coeficientes es distinto de cero.
Tales sistemas son sistemas compatibles determinados y se denominan sistemas de Cramer.
Sistema
Sea Δ el determinante de la matriz de coeficientes.
Delta
Todo sistema de Cramer tiene una sola solución (es decir, es un sistema compatible determinado) que viene dada por las siguientes expresiones:
soluciones
Δ1Δ2 , Δ3, ... , Δn son los determinantes que se obtiene al sustituir los coeficientes del 2º miembro (los términos independientes) en la 1ª columna, en la 2ª columna, en la 3ª columna y en la enésima columna respectivamente.
soluciones
soluciones
soluciones
...

soluciones

4.4 Aplicaciones :Modelo insumo-producto, análisis de ventas y comportamiento del consumidor.






 A fin de presentar en las siguientes líneas la esencia del modelo de Insumo–Producto, imaginemos una economía sin comercio exterior y sin impuestos, para simplificar la exposición. Pensemos en una matriz insumo–producto esquemática como la que se muestra a continuación (véase Leontief, 1986 y Millery Blair, 1985).
Donde el elemento típico de es Wij, que representa las ventas del sector al jes un vector columna que muestra las ventas del sector a la demanda final y es un vector hilera que muestra los pagos del sector a los factores de producción.
Entonces, la matriz insumo producto se puede representar alternativamente como:
que no es más que una representación de la matriz insumo producto en términos de flujos.
Definamos ahora Wij = aij qj , es decir el coeficiente aij = Wij / qj , y tenemos:
que, expresado en forma matricial, se reduce a:
q = Aq + f
donde la matriz es la matriz de coeficientes cuyo elemento típico es aij.
Hasta ahora, el sistema no es más que una forma contable de representación de flujos en la matriz de Insumo–Producto y no se ha postulado ningún comportamiento económico. Sin embargo, si se piensa en este sistema como un sistema de ecuaciones que representa el funcionamiento de una economía y se hace el supuesto de que los sectores operan con funciones de producción que no permiten sustituibilidad entre insumos (coeficientes aijfijos), podemos entonces imaginar que el sistema describe la formación de la oferta y demandas. Se tiene entonces la representación de un modelo económico en el que los precios de los factores son fijos.
Este sistema tiene la siguiente solución:
donde la matriz es conocida como la matriz inversa de Leontief o matriz de multiplicadores (análoga al multiplicador keynesiano).
La matriz (I –A)–1 es fundamental en el análisis insumo–producto, pues muestra los impactos totales de la demanda de producto de cada sector en el resto de los sectores. Es decir, esta matriz tiene características análogas a las del multiplicador keynesiano pues permite incorporar la interdependencia tecnológica del sistema productivo y rastrear la generación de la demanda final hacia atrás en el sistema. Entonces permite calcular cuánta producción se requiere para atender diversos niveles de demanda final y, en consecuencia, cómo deberían cambiar los niveles de producción para satisfacer esos cambios en la demanda final, los que pueden provenir de, por ejemplo, aumentos en los montos de inversión, pública y/o privada, además de otros componentes de la demanda final. Nótese que, en la medida en que se pueden estimar los niveles de producción requeridos en todos los sectores para satisfacer el cambio en la demanda final, se pueden también estimar los requerimientos de insumos, empleo e ingreso de todos los sectores.





Mi conclusión: 
Son procedimientos muy largos pero eficaces para obtener los resultados solo hay que basarse en las propiedades de las operaciones.


Bibliografia: http://www.vitutor.com/algebra/sistemas%20I/cramer.html
Matemáticas para administración y economía Haeusler Pearson/
 Prentice Hall, 10° Edición, 2008.

4.3.3 Propiedades de los determinantes

Los determinantes tienen las siguientes propiedades que son útiles para simplificar su evaluación.
En los párrafos siguientes consideramos que  A  es una matriz cuadrada.

Propiedad 1.


Si una matriz  A  tiene un renglón (o una columna) de ceros, el determinante de A es cero.



Ejemplo 1.

            Sea  

Desarrollando por cofactores del primer renglón se tiene

                      

Propiedad 2.


El determinante de una matriz  A   es  igual al determinante de la transpuesta de  A.


 Esto es
                                                 

Ejemplo 2.

                      Sea       

La transpuesta de A  es          


Propiedad 3.


Si se intercambian dos renglones (o dos columnas) de una matriz  A entonces el determinante cambia de signo.


Ejemplo 3.

Sea            con      

Intercambiando los renglones  1  y  2   la matriz queda

           con     

Note que los determinantes se calcularon expandiendo por cofactores de la primera columna.

Propiedad 4.


Si una matriz  A  tiene dos renglones (o dos columnas) iguales  entonces   det A = 0.           



Ejemplo 4.

Sea           entonces  


Propiedad 5.


Cuando un solo renglón (o columna) de una matriz  A  se multiplica por un escalar  r  el determinante de  la matriz  resultante es  r  veces el determinante de  A,   r det A.



Ejemplo 5.

Sea       cuyo determinante se calculó en el ejemplo 2,  

Multiplicando el tercer renglón de A por el escalar  r = 3 se tiene la matriz  B siguiente

                                                

cuyo determinante, desarrollado por cofactores de la primera columna de B es     

       

Propiedad 6.


Si un renglón de la matriz  A  se multiplica por un escalar    y se suma a otro renglón  de A, entonces el determinante de la matriz resultante es igual  al determinante de A,  det A.   Lo mismo se cumple para las columnas de A.



Ejemplo 6.

Sea       cuyo determinante se calculó en el ejemplo 2,  

Multiplicando la segunda columna de A por el escalar  2  y sumándola a la columna 3 se obtiene la matriz B siguiente
  
                      

Expandiendo por cofactores de la primera columna se tiene

        


Propiedad 7.


Si  A  y   son matrices de , el determinante del producto AB es igual al producto de los determinantes de A y de B.


Esto es
                                              

Ejemplo 7.

Sean           y           

con       y      

 El producto      

Y su determinante  es     

Entonces     .

Propiedad 8.


El determinante de la matriz identidad I es igual a 1 (uno)


Ejemplo 8.

I =                   det I = (1)(1) – (0)(0) = 1

Propiedad  9.


El determinante de una matriz singular, es decir, que no tiene inversa, es igual a 0 (cero)


Ejemplo 9.
J =           |J| = (1)(-12) – (-3)(4) = -12 +12 = 0

Se puede fácilmente comprobar que la matriz J no tiene inversa.


Uso de las propiedades para calcular determinantes de alto orden.

Al utilizar las operaciones elementales sobre renglones, se puede reducir un determinante a una forma mas fácil de evaluar.  Si se reduce a una forma triangular superior o inferior, el determinante es el producto de los elementos de la diagonal principal.  Al hacerlo hay que tomar en cuenta las propiedades 3,  5  y  6,  como en el siguiente ejemplo.

Ejemplo 10.

Calcular el determinante de la matriz  A  de  

                  

Simplificamos el cálculo del determinante de A  reduciendo por renglones

      

Entonces, la permutación P14  cambia el signo de  det A , las operaciones    y      no  cambian el valor del determinante.
De esta forma
                          

Se podría seguir reduciendo a la forma triangular, pero observando que hay varios ceros en el tercer renglón resulta fácil desarrollar por cofactores, primero de la primera columna, y después del tercer renglón: